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Abstract. The occurrence of unexpectedly large displacements in the interior of the oceans is studied through the dynamics of
packets of internal waves, where the evolution is governed by the nonlinear Schrodinger equation. The case of constant
buoyancy frequency permits analytical treatment. While modulation instability for surface waves only arises for sufficiently
deep water, rogue internal waves may occur if the fluid depth is shallow. The dependence on the stratification parameter and
choice of internal modes can be demonstrated explicitly. The spontaneous generation of rogue waves is tested by numerical
simulations.

1 Introduction

Rogue waves are unexpectedly large displacements from equilibrium positions or otherwise tranquil configurations. Oceanic
rogue waves obviously pose immense risk to marine vessels and offshore structures (Dysthe, et al., 2008). After these waves
were observed in optical waveguides, studies of such extreme and rare events have been actively pursued in many fields of
science and engineering (Onorato et al., 2013). Within the realm of oceanic hydrodynamics, the occurrence of rogue waves in
coastal regions has been recorded (Nikolkina and Didenkulova, 2011; O’Brien et al., 2018).

Theoretically the propagation of weakly nonlinear, weakly dispersive narrow-band wave packets is governed by the
nonlinear Schrodinger equation, where the dynamics is dictated by the competing effects of second order dispersion and cubic
nonlinearity (Ablowitz and Segur, 1979). Modulation instability of plane waves and rogue waves can then occur only if
dispersion and cubic nonlinearity are of the same sign. For surface wave packets on a fluid of finite depth, rogue modes can
emerge for kh > 1.363 where £ is the wavenumber of the carrier wave packet and 4 is the water depth. Hence conventional
understanding is that such rogue waves can only occur if the water depth is sufficiently large.

Other fluid physics phenomena have also been considered, such as the effects of rotation (Whitfield and Johnson,
2015) or the presence of shear current (Liao et al., 2017). While such considerations may change the numerical value of the
threshold (1.363), the requirement of water of large depth is probably unaffected. For wave packets of large wavelengths,
dynamical models associated with the shallow water regime have been employed (Didenkulova and Pelinovsky, 2016), such
as the well-known Korteweg-de Vries and Kadomtsev-Petviashvili types of equations (Grimshaw et al., 2010, 2015), which

may also lead to modulation instability under several special circumstances.
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The goal here is to establish another class of rogue wave occurrence through the effects of density stratification,
namely, internal waves in the interior of the oceans. The asymptotic multiple scale expansions for internal wave packets under
the Boussinesq approximation also yield the nonlinear Schrodinger equation (Grimshaw, 1977, 1981; Liu and Benney, 1981).
When the buoyancy frequency is constant, modulation instability in one horizontal space dimension will only occur for kh <
kch = 0.766nT where the fluid is confined between rigid walls distance /4 apart, n is the vertical mode number of the internal

wave, and the critical wave number . given by:
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The important point is not just a difference in the numerical value of the cutoff, but rogue waves now occur for water
depth less than a certain threshold. Our contribution is to extend this result. The likelihood of occurrence of internal rogue
waves is: (i) determined by estimation of the growth rate of modulation instability, and (ii) elucidated by a numerical simulation
of emergence of rogue modes with the optimal modulation instability growth rate as the initial condition.

2 Formulation
2.1 Nonlinear Schrodinger theory for stratified shear flows
The dynamics of small amplitude (linear) waves in a stratified shear flow with the Boussinesq approximation is governed by

the Taylor-Goldstein equation (¢(y) = vertical structure, k£ = wavenumber, ¢ = phase speed, U(y) = shear current):
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where N is the Brunt-Viisild frequency or more simply ‘buoyancy frequency’ (p is the background density profile):
d
N2 =-2%8 ®3)
pdy

The evolution of weakly nonlinear, weakly dispersive wave packets is described by the nonlinear Schrédinger equation for the
complex-valued wave envelope S, obtained through a multi-scale asymptotic expansion, which involves calculating the
induced mean flow and second harmonic (f, y being parameters determined from the density and current profiles):
iS; — BSee — vISI2S =0, t=¢%, &=¢e(x—cyt) @
where 7 is the slow time scale, ¢ is the group velocity (cg) coordinate and ¢ is a small amplitude parameter.
2.2 Constant buoyancy frequency

For the simple case of constant buoyancy frequency Ny, the formulations simplify considerably in the absence of

shear flow (U(y) = 0). The linear theory Eq. (2) yields simple solutions for the mode number n:

N=No., ¢ =sin(*2), (5)
with the dispersion relation, phase velocity (c¢) and group velocity (c,) given by
k2N w dw c
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The subsequent nonlinear analysis yields the coefficients of the nonlinear Schrodinger equation in explicit forms:

2
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A plane wave solution for Eq. (4) (or physically a continuous wave background of amplitude 4o) is
S = Ao exp[—iyA3T] .
Small disturbances with modal dependence exp[i(r¢ — Q)] will exhibit modulation instability if
(a) 02 = Br2(pr? — 2y A2) is negative, i.e. for Sy > 0; calculations using Eqs. (6, 7) lead to k < k.h = 0.766nm (Eq. (1));
(b) the maximum growth rate is (imaginary part of ) = Q; = |y|A3 for a special wavenumber given by g2 = y'24,;
(c) the growth rate for long wavelength disturbance is |Q./r| = (28y)"*4, for r — 0.

In terms of significance in oceanography, the constraint kh < k.h = 0.766nw does not depend on the constant buoyancy
frequency No. However, it does depend on the mode number (n) of the internal wave, with the higher order modes permitting
a large range of carrier envelope wavenumber and fluid depth for rogue waves to occur.

3. Computational Simulations

An intensively debated issue in the studies of rogue waves is the proper condition which may generate or favour the occurrence
of such large amplitude disturbances. One suggestion is the role played by long wavelength modes associated with modulation
instability, or ‘baseband instability’ (Baronio et al., 2015). To highlight this effect and to clarify the role of stratification as
well as the choice of internal wave modes, numerical simulations are performed where modes with the proper modulation
instability growth rate on a plane wave background are selected as the initial condition (Chan and Chow, 2017). Figure 1 shows
that rogue waves can occur sooner with greater values of baseband modulation instability. A comprehensive survey of the
dependence on the hydrodynamic and oceanic dynamics parameters, No, /, k, and n, will be conducted in a future study.

4. Discussions and Conclusions

An analytically tractable model for packets of internal waves is studied through four input parameters, / (fluid depth), &
(wavenumber of the carrier envelope packet), Ny (buoyancy frequency), and » (mode number of the internal wave), with only
h and k relevant for surface waves. For internal waves, modulation instabilities and rogue waves now occur for the shallow
water regime. With knowledge of baseband instability and supplemented by computer simulations, the likelihood of occurrence
of rogue waves is assessed. Remarkably the constant buoyancy frequency may not play a critical role in the condition of
occurrence, but the mode number of the internal wave does. For breathers or other pulsating modes, this buoyancy frequency
parameter will enter the likelihood estimation and further analytical and computational studies will be valuable (Sergeeva et

al., 2014).
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Figure 1: The emergence of rogue wave modes for different values of modulation instability growth rates with a background

continuous wave plus a long wavelength unstable mode as initial condition. Left: No =2, h = 1.5, k = 0.5, n = 1, baseband instability

growth rate = 0.0407. Larger gain implies a smaller time is required (t = 40); Right: No=2, h =1, k= 0.5, n = 1, baseband instability
5 growth rate = 0.0186. Smaller gain implies a longer time is required (t = 55).
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